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Deterministic soluble model of coarsening

L. Frachebourg and P. L. Krapivsky
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215

~Received 22 July 1996!

We investigate a three-phase deterministic one-dimensional phase ordering model in which interfaces move
ballistically and annihilate upon colliding. We determine analytically the autocorrelation functionA(t). This is
done by computing generalized first-passage-type probabilitiesPn(t), which measure the fraction of space
crossed by exactlyn interfaces during the time interval (0,t), and then expressing the autocorrelation function
via Pn’s. We further reveal the spatial structure of the system by analyzing the domain size distribution.
@S1063-651X~97!08201-9#

PACS number~s!: 05.40.1j, 64.60.Cn, 64.60.My, 82.20.Mj
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I. INTRODUCTION AND THE MODEL

We examine phase ordering dynamics in a o
dimensional system with three equilibrium states. In o
model, interfaces between dissimilar domains undergo
listic motion and annihilate upon colliding. The process
thus deterministic, although randomness is hidden in the
tial conditions. Given an appealing simplicity of the rul
governing the dynamics, it is not surprising that this proc
and its generalizations naturally arise in different conte
ranging from ballistic annihilation@1–5# to growth processes
@6–9# and dynamics of interacting populations@10–12#. Dif-
ferent viewpoints on the same model are very useful in t
they suggest investigation of several correlation functio
some of them may be clearly interesting from one point
view, while they could hardly be thought of from anoth
point of view. One such correlation function, namely, t
autocorrelation function to be determined below, natura
appears in the context of population dynamics@12#; from
other viewpoints, e.g., in the original framework of ballist
annihilation@1#, it is not clear how to define the autocorr
lation function.

We start by describing the two-velocity ballistic annihil
tion model and recalling its known basic properties@1,4#.
The model assumes that interfaces may have two diffe
velocities61 without loss of generality and the densities
both populations of interfaces are equal to each other~other-
wise the minority population quickly disappears!. The inter-
faces are initially randomly distributed according to a Po
son distribution. The model exhibits a two-length spat
structure, with length scalel (t);At describing the averag
distance between neighboring interfaces moving in the s
direction and the length scaleL(t);t describing the typical
distance between neighboring interfaces moving in the op
site directions. As we shall see below, however, the gro
law for l (t) cannot fully characterize the spatial structu
other natural measures of the spacing between similar ne
boring interfaces behave differently, e.g., the rms separa
l 2(t)5A^x2& grows ast3/4. We shall argue below that a
these length scales can be understood as the outcome o
competition between the length scaleO(1) characterizing
initial data and the ballistic length scaleL(t);t.

On the language of phase ordering dynamics, the t
velocity ballistic annihilation model may be treated as t
551063-651X/97/55~1!/252~5!/$10.00
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three-phase, or three-color, process with deterministic n
conservative dynamics. Indeed, imagine that the o
dimensional line is drawn in three colors, say red, green,
blue. Suppose that the interface between red and green
mains always moves inside the green one, the interface
tween green and blue domains moves inside the blue
and the interface between blue and red domains moves in
the red one. Then the autocorrelation functionA(t) is defined
as the probability that at a given point and at timet the color
is identical to the initial color. In the dynamics of interactin
populations, this model mimics a three-species cyclic fo
chain @12#.

The rest of this paper is organized as follows. Generali
first-passage probabilities are determined in Sec. II. Sec
III contains a calculation of the autocorrelation function. T
domain size distribution is analyzed in Sec. IV. Section
provides a summary and an outlook.

II. GENERALIZED FIRST-PASSAGE PROBABILITIES

Our first goal is to computePn(t), which measures the
fraction of space crossed by exactlyn interfaces during the
time interval (0,t). Equivalently,Pn(t) is the probability that
a point has undergone exactlyn changes of color. Clearly
the color of an arbitrary point changes cyclically with perio
3, so the autocorrelation function is found from the relati

A~ t !5 (
n50

`

P3n~ t !. ~1!

To determinePn(t), it proves convenient to consider a
auxiliary one-sided problem with a finite number of inte
faces on one side of a target point. Namely, imagine that
haveN interfaces to the right of the origin~the target point!.
What is the probabilityQn(N) that exactlyn interfaces will
cross the origin? To solve forQn(N), we construct the fol-
lowing discrete random walk: LetS050 andSi are defined
recursively viaSi5Si211v i ,i51, . . . ,N, wherev i561 is
the velocity of thei th interface. Thus we indeed have a ra
dom walk (i ,Si) starting from the origin, withi being a
timelike variable andSi a displacement. The crucial point i
that the number of interfaces that will cross the origin
given by the absolute value of the minimum of the rando
walk. Thus we identifyQn(N) with probability that an
252 © 1997 The American Physical Society
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55 253DETERMINISTIC SOLUBLE MODEL OF COARSENING
N-step random walk starting at the origin has a minimum
2n. This probability is simply found to be@13#

Qn~N!5Q̃n~N!1Q̃n11~N!, ~2!

with

Q̃n~N!5
1

2N
N!

SN1n

2 D ! SN2n

2 D ! ~3!

if n andN have the same parity; otherwise,Q̃n(N)50.
Before returning to the original two-sided problem w

consider the one-sided problem with aninfinite number of
interfaces initially placed to the right of the origin at rando
with density one. During the time interval (0,t) interfaces
initially located at distancesx<t could cross the origin.
Clearly, the probabilityQn(t) that exactlyn interfaces cross
the origin up to timet is

Qn~ t !5 (
N5n

`

Qn~N!
tNe2t

N!
. ~4!

Substituting Eqs.~2! and ~3! into Eq. ~4! yields

Qn~ t !5e2t@ I n~ t !1I n11~ t !#, ~5!

whereI n denotes the modified Bessel function of ordern. If
the origin has not been crossed by a right-moving interf
up to timet, an interface starting from the origin and movin
with 11 velocity will survive up to timet/2. Thus the sur-
viving probabilityS(t) of an interface is given by

S~ t !5Q0~2t !5e22t@ I 0~2t !1I 1~2t !#. ~6!

First-passage probabilitiesPn(t) corresponding to the
two-sided problem are readily expressed via one-sided p
abilitiesQn(t) after realizing that in a configuration withn
interfaces crossing the origin in the right-sided version a
k interfaces crossing the origin in the left-sided version,
total crossing number in the two-sided version is equa
max(k,n). Thus we arrive at the relationship

Pn~ t !52Qn~ t !(
k50

n

Qk~ t !2Qn~ t !
2, ~7!

with the factor 2 accounting for the fact that a smaller nu
berk of crossing interfaces can come from both the left a
right. We have subtracted the last quantityQn(t)

2, which has
been counted twice in the summation. As a useful check
self-consistency we verify that the normalization conditio

(
n50

`

Pn~ t !51 ~8!

is satisfied. Indeed, Eq.~7! implies (Pn5((Qn)
2, and the

latter sum is shown to be equal to one by using Eq.~5! and
the identityI 0(t)12( j>1I j (t)5et @14#.

Note that Pn’s, and especially the first ‘‘persistence
probabilityP0(t), recently have attracted considerable int
est; see, e.g.,@15–20#. These quantities can be thought of
first-passage time probabilities in the interacting particle s
t
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tems @21#. Given the importance of the first-passage-ty
quantities in the classical probability theory@13#, one can
envision numerous applications ofPn’s in the interacting
particle systems. However, apart from a few findings in
framework of a mean-field approach~more precisely, for in-
teracting particle systems on a complete graph! @12,19# and a
limiting analytical solution for the one-dimensional vot
model @19#, no exact results are available. The model
consider here is an exception in that the complete analyt
solution forPn’s exists; see Eqs.~5!–~7!. In particular, we
haveP0(t)5Q0

2(t).2(pt)21.
To make the results more transparent, it is useful to

press solutions in the scaling limit

n→`, t→` ~9!

for z5n/A2t finite. Making use of the scaling behavior o
the modified Bessel functions @14# I n(t)
.(2pt)21/2exp(t2n2/2t), we find

Qn~ t !.A 2

pt
e2z2 ~10!

for the one-sided probabilities and

Pn~ t !.A 8

pt
e2z2erf~z! ~11!

for the two-sided probabilities.

III. AUTOCORRELATION FUNCTION

The scaling expression of Eq.~11! does not allow one to
obtain the nontrivial long-time behavior of the autocorre
tion function. Indeed, substituting Eq.~11! into Eq.~1! yields
A(t).1/3. We should therefore return to exact relations~5!–
~7!. We also extract the trivialA(`)51/3 factor and con-
sider three autocorrelation functions

Aa~ t !5 (
n50

`

P3n1a~ t !2
1

3
, ~12!

describing three possible color outcomes at timet, the same
~say, red! color that initially corresponds toa50,
A0(t)[A(t)21/3; the ‘‘next’’ blue color corresponds to
a51; finally, the green color corresponds toa52.

All three autocorrelation functionsAa(t) exhibit similar
asymptotic behavior; additionally, they are related by t
identity A0(t)1A1(t)1A2(t)[0. Combining Eqs.~12! and
~8!, we obtain

3A0~ t !53(
n50

`

P3n~ t !21

5 (
n50

`

@~P3n2P3n21!1~P3n2P3n11!#, ~13!

whereP21[0. Equation~7! allows us to expressPn’s via
Qn’s. Thus we get
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P3n2P3n215Q3n
2 1Q3n21

2 12~Q3n2Q3n21! (
k50

3n21

Qk

~14!

and

P3n2P3n115Q3n
2 22Q3nQ3n112Q3n11

2

12~Q3n2Q3n11! (
k50

3n21

Qk . ~15!

Substituting Eqs.~14! and ~15! into Eq. ~13! yields

3A0~ t !5 (
n50

`

~Q3n2Q3n11!
2

1 (
n50

`

~Q3n21
2 1Q3n

2 22Q3n11
2 !

12(
n50

`

~2Q3n2Q3n212Q3n11! (
k50

3n21

Qk .

~16!

In the following calculations we use the exact solution~5!,
the asymptotic relationI n(t).(2pt)21/2exp(t2n2/2t), and
the identity@14#

I n21~ t !2I n11~ t !5
2n

t
I n~ t !. ~17!

The first sum on the right-hand side of Eq.~16! behaves as

(
n50

`

~Q3n2Q3n11!
2.

t23/2

6Ap
. ~18!

The second sum on the right-hand side of Eq.~16! is deter-
mined by treatingQn21

2 (t)22Qn
2(t)1Qn11

2 (t) as the second
derivative]2Qn

2/]n2, which is asymptotically correct. Usin
the scaling expression~10! for Qn(t), this sum is shown to
decay ast22 in the scaling limit. Similarly, the computatio
of the third line on the right-hand side of Eq.~16! is simpli-
fied by the approximationQn21(t)22Qn(t)1Qn11(t)
.]2Qn /]n

2. After some algebra, this third term is found
decay as2(2/3p)t21 and thus provides a dominant contr
bution. The corresponding values forA1(t) andA2(t) follow
from the same kind of computation. Thus we finally arrive
the following asymptotic behavior of the autocorrelati
functions:

A0~ t !.2
2

9pt
, A1~ t !.

4

9pt
, A2~ t !.2

2

9pt
.

~19!

It is surprising that in the long-time limitA0 andA2 exhibit
similar behaviors, while the amplitude of theA1 has the op-
posite sign and is twice as large.

In the general context of coarsening@22#, the autocorrela-
tion function is known to decay asL2l. It has been argued
that the exponentl satisfiesd/2<l<d in d dimensions
@23#. Our model impliesA(L);L21 (l51) and thus coin-
t

cides with the upper bound as it happens in a few ot
models, e.g., in the voter model@19#. Most other studies@24#
also found values of the autocorrelation exponent satisfy
d/2<l<d ~see, however, Ref.@25#, which reports a viola-
tion of the upper bound for the conserved dynamics!.

IV. SPATIAL STRUCTURE

Turn now to the spatial structure formed as the ballis
annihilation process proceeds. Among several quanti
characterizing the spatial distribution we choose the dom
size distribution function for which some analytical resu
are already available@4#. Let us denote bym12(x,t)
the probability density that at timet the right nearest neigh
bor of a1 interface is a2 interface located at distancex
apart. Similarly, we introduce m11(x,t)[m22(x,t)
and m21(x,t). The Laplace transform m̂(z,t)
5*0

`dxe2xzm(x,t) of these quantities has been comput
exactly @4#:

m̂11~z,t !5
1

11J12z
, ~20!

m̂21~z,t !5
S~ t !e22zt

11J12z
, ~21!

m̂12~z,t !5
e2zt

S~ t !

J212z~J21!

11J12z
, ~22!

whereS(t), the probability for the interface to survive up t
time t, is given by Eq.~6! and

J[J~z,t !5e22ztS~ t !12zE
0

t

dte22ztS~t!. ~23!

The solution of Eqs.~20!–~22! has been originally derived in
an alternative analytical approach to simpler previous o
@1,6#; this approach of Ref.@4# has an advantage of bein
applicable to more difficult ballistic annihilation process
such as the three-velocity ballistic annihilation@5#. However,
the actual spatial characteristics have not been extracted
Eqs.~20!–~22!.

As a first step, we compute the average length scale

^x&5

E
0

`

dxxm~x,t !

E
0

`

dxm~x,t !

52
1

m̂~0,t !

]m̂~z,t !

]z U
z50

. ~24!

After straightforward calculations we find the average size
a domain with boundaries moving in the same direction,

^x&115
2

11S~ t ! F E
0

t

dtS~t!2tS~ t !11G . ~25!

Similarly, we find the average domain size in two other si
ations

^x&2152t1^x&11 ~26!

and
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^x&1252
12S~ t !

S2~ t !
12t2

4

S~ t !E0
t

dtS~t!

1
2

11S~ t ! F E
0

t

dtS~t!2tS~ t !11G . ~27!

Making use of the asymptotic relationS(t).(pt)21/2, we
arrive at the long-time behaviors

^x&11.A4t

p
, ^x&21.2t, ^x&12.2~p23!t.

~28!

It is instructive to proceed by computinĝxn&1/n for an
arbitrary positive integer indexn. One readily expresse
^xn&1/n via m̂(z,t), e.g., ^x2&5@m̂(0,t)#21@]2m̂(z,t)/
]z2#uz50. Any of these quantities can be used to characte
the length scale. For domains with dissimilar boundary int
faces one findŝxn&12

1/n ;^xn&21
1/n ;t, implying that all these

distances are characterized by the single ballistic length s
L(t);t. In contrast, for similar interfaces we get anomalo
asymptotic behaviorŝ x2&1/2.(9p)21/4t3/4 and generally
^xn&11

1/n ;t121/2n for integern. This odd feature indicates tha
the length scale characterizing the average separation o
nearest similar moving interfacesl (t)5^x&11;At is just
one of the hierarchy of length scalesl n(t)5^xn&11

1/n All
these scales are better thought of as effective scales resu
from the competition between the two basic scales in
problem: the scale of order one forced by initial conditio
and the ballistic scale of ordert.

This two-scale spatial structure clearly appears in
form of the nearest-neighbor distributionsm(x,t). To deter-
mine these distributions, we compute the inverse Lapl
transform of Eqs.~20!–~22!. We first note thatJ(z,t) can be
rewritten as

J~z,t !52zE
0

`

dte22ztS~t!2E
t

`

dte22ztS8~t!

52z1Az212z1E
2t

`

dte2zt
e2tI 1~t!

t
, ~29!

where we have computed the Laplace transformŜ(2z) and
the derivative ofS(t). We then expandm̂11 to find

m̂11~z,t !5â~z!2â~z!2b̂~z,t !1â~z!3b̂~z,t !21•••,
~30!

where

â~z!5z112A~z11!221 ~31!

and

b̂~z,t !5E
2t

`

dte2zt
e2tI 1~t!

t
. ~32!

Performing the inverse Laplace transform ofâ(z) and
b̂(z,t), we get
e
r-

le
s

the

ing
e

e

e

a~x!5
e2xI 1~x!

x
, b~x,t !5

e2xI 1~x!

x
Q~x22t !. ~33!

Combining Eqs.~30! and ~33! we finally obtain

m11~x,t !5a2a* 2* b1a* 3* b*
22a* 4* b*

31•••,
~34!

where f* g5*0
xdy f(y)g(x2y) is the convolution off and

g, f * 25 f* f , f *
35 f* f* f , etc.

Noting thata* k(x)5ke2xI k(x)/x @27#, the convolution in
the second term on the right-hand side of Eq.~34! can be
calculated in the long-time limit to yield

a* a* b.
Q~j!

A2px3
$12e2j@ I 0~j!12I 1~j!1I 2~j!#%,

~35!

wherej5x22t. The following terms in Eq.~34! give cor-
rections forx>4t,6t, . . . .

The only contribution tom11(x,t) for x,2t is the first
time-independent terma(x). For largex, it scales asx23/2.
According to the mapping of Sec. II, it is analogous to t
probability that a random walker starting at the origin fir
returns to the origin afterx steps. A singularity in the secon
derivative arises atx52t and weaker and weaker singular
ties appear forx being an integer multiple of 2t. It should be
noted that the scalel;At doesnotappear in this distribution.
The only arising scales are the scaleO(1) characterizing the
time-independent contributiona(x) and the ballistic scale
O(t) characterizing the following terms. The origin of oth
length scales can be traced to the power-law tail of the tim
independent part a(x) of m11(x,t). Indeed, l n(t)
5^xn&11

1/n ;@*0
2tdxxna(x)#1/n;t121/2n. This behavior should

be contrasted with systems presenting multiscaling@26#,
where an infinite number of length scales are present.

Using properties of the Laplace transform@27#, the distri-
butions m12(x,t) and m21(x,t) can be expressed vi
m11(x,t),

m12~x,t !5S~ t !m11~x22t,t !Q~x22t !,

m21~x,t !5
m11~x12t !

S~ t !
, ~36!

thus providing a comprehensive description of the interfa
distribution in this problem.

V. SUMMARY AND OUTLOOK

We have shown that the two-velocity ballistic annihilatio
process may be thought of as the three-phase determin
model of coarsening. This is one of the simplest models
coarsening ever known and we have derived exact solut
for the generalized first-passage probabilitiesPn(t) and for
the autocorrelation function.

We have revealed a rich spatial structure arising as
phase-separation process develops. In particular, the
ments of the domain size distributionl n(t)5^xn&11

1/n exhibit
a variety of scales from the time-independent one to the s
linearly growing with time:
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l n~ t !;H 1 when n,1/2

t121/2n when n.1/2.
~37!

We have argued that only the two extreme scales, the ba
tic one and the scaleO(1) characterizing the initial distribu
tion, are important, while the others are effective in that th
arise as the result of competition between the extreme sc
The distribution of nearest neighbors has shown a nontri
behavior with singularities at eachx being an integer mul-
tiple of 2t.

Using the mapping on a random walk problem introduc
in Sec. II, it should be possible to compute the two-po
equal-time correlation functionG(x,t) and even the mos
general two-point correlation functionC(x,tu0,t8), which
contains both the equal-time correlation functi
G(x,t)[C(x,tu0,t) and the autocorrelation functio
A(t)[C(0,tu0,0). We were able to solve forG(x,t) for
x>2t, but the solution is very cumbersome, so we could
ys

J.

ev

l

is-

y
es.
al

d
t

t

derive clear scaling results. Numerical simulations, howev
reveal an interesting oscillatory behavior ofG(x,t).

Another interesting question concerns the extension of
three-phase deterministic model to higher dimensions. I
very simple to define a three-color cycliclattice model in
arbitrary dimension@10,12#. The problem is that the system
does not exhibit coarsening whend>2 and instead ap-
proaches a reactive state with the average number of c
changes growing linearly with time. However, one can ho
that a proper higher-dimensional extension still exists.
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