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Deterministic soluble model of coarsening

L. Frachebourg and P. L. Krapivsky
Center for Polymer Studies and Department of Physics, Boston University, Boston, Massachusetts 02215
(Received 22 July 1996

We investigate a three-phase deterministic one-dimensional phase ordering model in which interfaces move
ballistically and annihilate upon colliding. We determine analytically the autocorrelation furfefiynThis is
done by computing generalized first-passage-type probabiltjgs), which measure the fraction of space
crossed by exactlp interfaces during the time interval (9, and then expressing the autocorrelation function
via P,'s. We further reveal the spatial structure of the system by analyzing the domain size distribution.
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PACS numbe(s): 05.40:+], 64.60.Cn, 64.60.My, 82.20.Mj

I. INTRODUCTION AND THE MODEL three-phase, or three-color, process with deterministic non-
conservative dynamics. Indeed, imagine that the one-
We examine phase ordering dynamics in a onedimensional line is drawn in three colors, say red, green, and
dimensional system with three equilibrium states. In ourblue. Suppose that the interface between red and green do-
model, interfaces between dissimilar domains undergo balmains always moves inside the green one, the interface be-
listic motion and annihilate upon colliding. The process istween green and blue domains moves inside the blue one,
thus deterministic, although randomness is hidden in the iniand the interface between blue and red domains moves inside
tial conditions. Given an appealing simplicity of the rulesthe red one. Then the autocorrelation functii) is defined
governing the dynamics, it is not surprising that this processs the probability that at a given point and at titrtee color
and its generalizations naturally arise in different contextds identical to the initial color. In the dynamics of interacting
ranging from ballistic annihilatiohl—5] to growth processes populations, this model mimics a three-species cyclic food
[6—9] and dynamics of interacting populatiofk0—12. Dif- chain[12].
ferent viewpoints on the same model are very useful in that The rest of this paper is organized as follows. Generalized
they suggest investigation of several correlation functionsfirst-passage probabilities are determined in Sec. Il. Section
some of them may be clearly interesting from one point oflll contains a calculation of the autocorrelation function. The
view, while they could hardly be thought of from another domain size distribution is analyzed in Sec. IV. Section V
point of view. One such correlation function, namely, theprovides a summary and an outlook.
autocorrelation function to be determined below, naturally
appears in the context of population dynamjd2]; from Il. GENERALIZED FIRST-PASSAGE PROBABILITIES
other viewpoints, e.g., in the original framework of ballistic
annihilation[1], it is not clear how to define the autocorre- ~ Our first goal is to computé(t), which measures the
lation function. fraction of space crossed by exactlyinterfaces during the
We start by describing the two-velocity ballistic annihila- time interval (0t). Equivalently,P(t) is the probability that
tion model and recalling its known basic propertfds4]. @ point has undergone exactychanges of color. Clearly,
The model assumes that interfaces may have two differerthe color of an arbitrary point changes cyclically with period
velocities*+ 1 without loss of genera”ty and the densities of 3, so the autocorrelation function is found from the relation
both populations of interfaces are equal to each dfbirer-
wise the minority population quickly disappear¥he inter-
faces are initially randomly distributed according to a Pois-
son distribution. The model exhibits a two-length spatial
structure, with length scalgt)~ \t describing the average To determineP,(t), it proves convenient to consider an
distance between neighboring interfaces moving in the samauxiliary one-sided problem with a finite number of inter-
direction and the length scal&(t) ~t describing the typical faces on one side of a target point. Namely, imagine that we
distance between neighboring interfaces moving in the oppdiaveN interfaces to the right of the origifthe target point
site directions. As we shall see below, however, the growthWhat is the probabilityQ,(N) that exactlyn interfaces will
law for I(t) cannot fully characterize the spatial structure:cross the origin? To solve fa@,(N), we construct the fol-
other natural measures of the spacing between similar neighewing discrete random walk: Les,=0 andS; are defined
boring interfaces behave differently, e.g., the rms separatiorecursively via§=S,_;+v;,i=1,... N, wherev;=*1 is
[,(t)= \/(—x27 grows ast¥%. We shall argue below that all the velocity of theith interface. Thus we indeed have a ran-
these length scales can be understood as the outcome of tlem walk (,S;) starting from the origin, withi being a
competition between the length scal{1) characterizing timelike variable ands; a displacement. The crucial point is
initial data and the ballistic length scal&t)~t. that the number of interfaces that will cross the origin is
On the language of phase ordering dynamics, the twogiven by the absolute value of the minimum of the random
velocity ballistic annihilation model may be treated as thewalk. Thus we identifyQ,(N) with probability that an

A(t>=n§0 Pan(t). 1)
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N-step random walk starting at the origin has a minimum atems [21]. Given the importance of the first-passage-type

—n. This probability is simply found to bEL3] quantities in the classical probability theof$3], one can
—~ ~ envision numerous applications &f,’s in the interacting
Qn(N)=Qn(N) +Qp+1(N), (2)  particle systems. However, apart from a few findings in the

framework of a mean-field approaé¢more precisely, for in-

with teracting particle systems on a complete gidfi2,19 and a
_ 1 NI limiting analytical solution for the one-dimensional voter
Qn(N) == ' (3  model[19], no exact results are available. The model we
2 w | E). consider here is an exception in that the complete analytical
2 7\ 2 ) solution for P,'s exists; see Eq95)—(7). In particular, we

. . ~ haveP(t) = Q3(t)=2(mt) ~*.

if n-andN have the same parity; otherwis@,(N)=0. To make the results more transparent, it is useful to ex-
Before returning to the original two-sided problem we press solutions in the scaling limit

consider the one-sided problem with arinite number of

interfaces initially placed to the right of the origin at random N—s 00

with density one. During the time interval (D,interfaces

Clearly, the probabilityQ,(t) that exactlyn interfaces cross ine modified Bessel  functions [14] 1,(t)

the origin up to timet is = (27t) " Y%expt—n/2t), we find

@ Qu(t)= \/%ezz (10

for the one-sided probabilities and

, b €)

tNe™t
!

Q)= 2 Qu(N)—
N=n

Substituting Eqs(2) and(3) into Eq. (4) yields
Qn(=e " TIn(t+1n1(D)], 5

8
wherel,, denotes the modified Bessel function of ordeif Pn(t)= \/;e_zzeff(z) (13)
the origin has not been crossed by a right-moving interface
up to timet, an interface starting from the origin and moving for the two-sided probabilities.
with +1 velocity will survive up to timet/2. Thus the sur-
viving probability S(t) of an interface is given by

—_ a2t
S()=Qo(20) =€ "[1o(21) +11(20)]. © The scaling expression of E¢L1) does not allow one to

First-passage probabilitie®,(t) corresponding to the o_btain th«_e nontrivial Iong-ti_me_ behavior of the auto_correla-
two-sided problem are readily expressed via one-sided proBion function. Indeed, substituting E€L1) into Eq. (1) yields
abilities Q,(t) after realizing that in a configuration with  A(t)=1/3. We should therefore return to exact relatiths-
interfaces crossing the origin in the right-sided version and?)- We also extract the triviah(=)=1/3 factor and con-

k interfaces crossing the origin in the left-sided version, theSider three autocorrelation functions
total crossing number in the two-sided version is equal to
max,n). Thus we arrive at the relationship

IIl. AUTOCORRELATION FUNCTION

- 1
Au(D)= 2, Pania(D) =3, (12

Pn<t>=2Qn<t)k§0 Qu(t) — Qn(1)?, (7)

describing three possible color outcomes at timthe same

_ ) (say, red color that initially corresponds toa=0,
with the factor 2 accounting for the fact that a smaller num-a (ty=A(t)—1/3; the “next” blue color corresponds to

berk of crossing interfaces can come from both the left and,, — 1 - finally, the green color corresponds de- 2
B 2 . 1 1 .
right. We have subtracted the last quan@y(t)“, which has All three autocorrelation functions.(t) exhibit similar
been counted twice in the summation. As a useful check ofsymptotic behavior; additionally, they are related by the
self-consistency we verify that the normalization condition identity Ag(t) + A;(t) + Ax(t)=0. Combining Egs(12) and
o (8), we obtain
> Po(t)=1 (8) .
n=0
_ . 3Ag(1) =32, Pay(t)—1
is satisfied. Indeed, Ed7) implies 2P,=(2Q,)?, and the n=0
latter sum is shown to be equal to one by using €&g.and %
the identityl o(t) +2%;-41;(t) = et [14]. — 2 [(Pay—Pan_1)+ (Pan—Pans1)], (13
Note that P,’s, and especially the first “persistence” n=0
probability Py(t), recently have attracted considerable inter-
est; see, e.g[15-20. These quantities can be thought of aswhere P_,=0. Equation(7) allows us to expres®,’s via
first-passage time probabilities in the interacting particle sysQ,’s. Thus we get
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3n—-1
Pan—Pan-1= Q%+ Q3 1+2(Q3,— Qan—1) go Qx
(14
and
Pan— P3n+l:Q§n_2Q3nQ3n+1_Q§n+l
3n—-1
+2(Qan=Qani1) 2 Q- (19
Substituting Eqs(14) and (15) into Eq. (13) yields
3Ao<t>=n§0 (Qan—Qan+1)?
+n§0 (Q3h-1+Q3.—2Q5%041)
o0 3n—1
+2r;0 (2Q3n—Q3n-1—Q3zn+1) kgo Q.-
(16)

In the following calculations we use the exact soluti@,
the asymptotic relatior ,(t)=(2t) YZexpt—n?2t), and
the identity[14]

2n
ln-2(D) = lnea()= = 1n(t). (17

The first sum on the right-hand side of E46) behaves as

-3/2

6\

The second sum on the right-hand side of Edf) is deter-
mined by treating?_,(t) —2Q2(t) + Q2 ,(t) as the second
derivativeazQﬁ/anz, which is asymptotically correct. Using
the scaling expressiofl0) for Q,(t), this sum is shown to
decay ag 2 in the scaling limit. Similarly, the computation
of the third line on the right-hand side of EA.6) is simpli-
fied by the approximationQ,_(t) —2Q,(t)+Qn.1(t)
=3%Q,/n?. After some algebra, this third term is found to
decay as— (2/37)t~! and thus provides a dominant contri-
bution. The corresponding values f&§(t) andA,(t) follow

go (Qan—Qan11)2= (18)

from the same kind of computation. Thus we finally arrive at
the following asymptotic behavior of the autocorrelation

functions:

2 4
Ao(t)z_g_ Al(t):ﬁy

=1 Ag(t) =~

9mt’
19

It is surprising that in the long-time limi#, and A, exhibit
similar behaviors, while the amplitude of tig has the op-
posite sign and is twice as large.

In the general context of coarsenif2], the autocorrela-
tion function is known to decay a8~ *. It has been argued
that the exponenh satisfiesd/2<A<d in d dimensions
[23]. Our model impliesA(£)~ £t (A=1) and thus coin-
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cides with the upper bound as it happens in a few other
models, e.g., in the voter modgl9]. Most other studief24]
also found values of the autocorrelation exponent satisfying
d/2=<\=<d (see, however, Ref25], which reports a viola-
tion of the upper bound for the conserved dynamics

IV. SPATIAL STRUCTURE

Turn now to the spatial structure formed as the ballistic
annihilation process proceeds. Among several quantities
characterizing the spatial distribution we choose the domain
size distribution function for which some analytical results
are already availabld4]. Let us denote byu, _(X,t)
the probability density that at timiethe right nearest neigh-
bor of a + interface is a— interface located at distance
apart. Similarly, we introduce ., (X,t)=u__(Xx,t)
and u_,(x,t). The Laplace transform u(z,t)
= [odxe **u(x,t) of these quantities has been computed
exactly[4]:

[L++(Zat)ZM! (20
R S(t)efzzt
k- (ZD=15000 @D
R e??t J24+22(J—-1)
,(.L+,(Z,t): (22)

S(t)y 1+J+2z °
whereS(t), the probability for the interface to survive up to
timet, is given by Eq.(6) and

JEJ(Z,t)ZefzztS(t)+22ftd7'672”8(7). (23
0

The solution of Eqs(20)—(22) has been originally derived in
an alternative analytical approach to simpler previous ones
[1,6]; this approach of Refl4] has an advantage of being
applicable to more difficult ballistic annihilation processes
such as the three-velocity ballistic annihilatid]. However,
the actual spatial characteristics have not been extracted from
Egs.(20)—(22).

As a first step, we compute the average length scale

Jaouxd iy

T a0p) oz

(24)

z=0

After straightforward calculations we find the average size of
a domain with boundaries moving in the same direction,

fthS(T)—tS(t)—Fl . (25
0

B 2
<X>++_—1+S(t)

Similarly, we find the average domain size in two other situ-
ations
(X)— 4 =2t+(X) 4+ (26)

and
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1-S(t)

B 4 [t e *l1(x)
(X), =2 =0 +2t—S(t)deTS(T)

ac= -1, e "ly(x)

X

b(x,t)= O(x—2t). (33

2

t Combining Egs(30) and(33) we finally obtain
+— drS(7)—tS(t)+1
1+S(t)| Jo

. (27

M++(X,t)=a_a*2* b+a*3* b*z—a*4* b*3+ cee

Making use of the asymptotic relatio®(t)=(t) "2 we (34

arrive at the long-time behaviors wherefx g=[%dyf(y)g(x—y) is the convolution off and

g, f*2=fxf, f*3=fx fx f, etc.
Noting thata* ¥(x) =ke 1, (x)/x [27], the convolution in

4t
<X>++:\E’ (Xy_y=2t, (X);_=2(7—3)t.
(28)

It is instructive to proceed by computing")*" for an

the second term on the right-hand side of E84) can be
calculated in the long-time limit to yield

0(§)

arbitrary positive integer indexi. One readily expresses ax ax b= {1—e qlo(d)+21(H+1(HT},
OO via a(zt), eg. ()=[a0] TPz 35
97%]|,- 0. Any of these quantities can be used to characterize

the length scale. For domains with dissimilar boundary i”ter'vvhere§=x—2t. The following terms in Eq(34) give cor-
faces one findgx™" ~(x")" rections forx=4t,6t, ... .

V2mrx3

+~t, implying that all these
distances are characterized by the single ballistic length scale The only contribution tou , . (x,t) for x<2t is the first
L(t)~t. In contrast, for similar interfaces we get anoma|0UStime-independent terra(x). For largex, it scales ax~ 32
asymptotic behaviors(x?)"?=(9m) **4** and generally According to the mapping of Sec. II, it is analogous to the
(x"¥, ~t1¥2 for integern. This odd feature indicates that probability that a random walker starting at the origin first
the length scale characterizing the average separation of theturns to the origin aftex steps. A singularity in the second
nearest similar moving interfacegt) =(x). . ~t is just  derivative arises at=2t and weaker and weaker singulari-
one of the hierarchy of length scaldz§(t):(x”)1+’“+ All ties appear fok being an integer multiple oft2 It should be
these scales are better thought of as effective scales resultingted that the scale- \/t doesnotappear in this distribution.
from the competition between the two basic scales in therhe only arising scales are the sc@l€l) characterizing the
problem: the scale of order one forced by initial conditionstime-independent contributioa(x) and the ballistic scale
and the ballistic scale of order O(t) characterizing the following terms. The origin of other

This two-scale spatial structure clearly appears in th@ength scales can be traced to the power-law tail of the time-
form of the nearest-neighbor distributiopgx,t). To deter- independent parta(x) of w.,.(xt). Indeed, I,(t)
mine these distributions, we compute the inverse Laplac&<xn>1+/f1rN[fgtdxxna(x)]llutl*l/m_ This behavior should
transform of Eqs(20)—(22). We first note thaf(z,t) can be

> be contrasted with systems presenting multiscalig2g],
rewritten as where an infinite number of length scales are present.
Using properties of the Laplace transfof@v], the distri-
butions x. _(x,t) and u_,(x,t) can be expressed via

/~L++(X!t)!

por - (X, =S(H) w4 (X= 28,1 O (x—2t),

J(Z,t)ZZZf dT€72ZTS(T)—f dre 22’S'(7)
0 t

o e ly(7
=—z+\2°+2z+ dre*”Tl(), (29)
2t

where we have computed the Laplace transfé(mz) and
the derivative ofS(t). We then expand., , to find

i (z)=2(z)—a(2)%b(z,t) +a(2)3b(z, )2+ - - -,

(30)
where
a(z)=z+1—-(z+1)2-1 (31
and
b(z,t)= :dre_”w. (32)
t

Performing the inverse Laplace transform afz) and
b(z,t), we get

Moy 4 (X+21)
sty

thus providing a comprehensive description of the interfaces
distribution in this problem.

M—-%—(th): (36)

V. SUMMARY AND OUTLOOK

We have shown that the two-velocity ballistic annihilation
process may be thought of as the three-phase deterministic
model of coarsening. This is one of the simplest models of
coarsening ever known and we have derived exact solutions
for the generalized first-passage probabiliiegt) and for
the autocorrelation function.

We have revealed a rich spatial structure arising as the
phase-separation process develops. In particular, the mo-
ments of the domain size distributidp(t) = (x")'", exhibit
a variety of scales from the time-independent one to the scale
linearly growing with time:
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1 when n<1/2 derive clear scaling results. Numerical simulations, however,
[L(t)~ AU when n>1/2 (37)  reveal an interesting oscillatory behavior @x,t).
' Another interesting question concerns the extension of the

We have argued that only the two extreme scales, the ballighree-phase deterministic model to higher dimensions. It is
tic one and the scal®(1) characterizing the initial distribu- Very simple to define a three-color cycliattice model in
tion, are important, while the others are effective in that they2roitrary dimensioi10,12. The problem is that the system
arise as the result of competition between the extreme scaled0€s not exhibit coarsening wherd=2 and instead ap-
The distribution of nearest neighbors has shown a nontriviaProaches a reactive state with the average number of color

behavior with singularities at eachbeing an integer mul- changes growing linearly with time. However, one can hope
tiple of 2t. that a proper higher-dimensional extension still exists.

Using the mapping on a random walk problem introduced
in Sec. Il, it should be possible to compute the two-point
equal-time correlation functiolG(x,t) and even the most
general two-point correlation functio€(x,t|0t’), which We wish to thank S. Redner for fruitful discussions. The
contains both the equal-time correlation functionwork of L.F. was supported by the Swiss National Founda-
G(x,t)=C(x,t|0t) and the autocorrelation function tion and the work of P.L.K. was partially supported by ARO
A(t)=C(0,]0,0). We were able to solve foB(x,t) for  (Grant No. DAAH04-93-G-0021 and NSF (Grant No.
x=2t, but the solution is very cumbersome, so we could notDMR-9219843.
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